Stress Analysis using EEG signals

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Analysis of Eeg Signals Using Som

The electroencephalogram (EEG) represents an efficient technique to measure and record brain electrical activity. The most common use of EEG includes the monitoring and diagnosis of the brain states and their disorders. It is based on the search of characteristic patterns in EEG signals and their evaluation. In terms of signal processing it uses feature analysis, more specifically feature extra...

متن کامل

Assessing the Effects of Alzheimer’s disease on EEG Signals Using the Entropy Measure: a Meta-Analysis

Introduction and Aims: Alzheimer’s disease is the most prevalent neurodegenerative disorder and a type of dementia. 80% of dementia in older adults is because of Alzheimer’s disease. According to multiple research articles, Alzheimer's has several changes in EEG signals such as slowing of rhythms, reduction in complexity and reduction in functional associations, and disordered functional commun...

متن کامل

Novel Methods for Stress Features Identification using EEG Signals

This paper introduces new methods to extract stress features from electroencephalogram (EEG) signals during two cognitive states; Closed-Eyes (CE) and Open-Eyes (OE) using Relative Energy Ratio (RER), Shannon Entropy (SE) and Spectral Centroids (SC). The group with the stress features was identified and classified using k-Nearest Neighbor (k-NN). The RER in term of Energy Spectral Density (ESD)...

متن کامل

Emotion recognition method using entropy analysis of EEG signals

This paper proposes an emotion recognition system using EEG signals, therefore a new approach to emotion state analysis by approximate (ApEn) and wavelet entropy (WE) is described. We have used EEG signals recorded during emotion in five channels (FP1, FP2, T3, T4 and Pz), under pictures induction environment (calmneutral and negative excited) for participants. After a brief introduction to the...

متن کامل

Automatic Sleep Stage Classification Using Frequency Analysis of Eeg Signals

An automated sleep stage classification system relying only on the frequency analysis of the EEG signal is developed and analyzed in this paper. The classification system consists of the feature extraction algorithm and a neural network classifier. We investigate two different feature extraction methods: a classical FFT frequency analysis and a novel LMS based feature extraction. The same two-l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology

سال: 2019

ISSN: 2321-9653

DOI: 10.22214/ijraset.2019.5213